HEAT CONDUCTION WITH A TEMPERATURE-DEPENDENT
THERMAL CONDUCTIVITY
II. VALIDITY OF VARIATIONAL FORMA LISM

Enrico Lorenzini UDC 536.2.01

The nonlinear equation of heat conduction is solved by the method of finite differences. The
results are compared with the solution to the same problem obtained by the variational
method,

Introduction

Nonlinear differential equations can be solved by the variational method. This method has been used
in several studies concerning heat conduction problems, Finlayson and Scriven in a very interesting and
critical paper show that the variational principle proposed by Rosen [2], Chambers [3], and Biot for solv-
ing heat transfer problems represent special cases of the weighted-differences method [4]. In a more re-
cent study, Finlayson and Scriven [5] analyze other attempts to formulate the variational principle and
point out the error in these attempts stemming from the fact that the variation integral is nonstationary.
Variational formalism is also discussed by Glansdorff, Prigogine, and Hays [6, 7l. Hays [8] and Hays and
Curd [9] have formulated the variational principle by the "local patential™ method. The latter method is
based on the work by Prigogine in 1945, where reference is made, for instance, to the possibility of using
the increase in entropy as a measure of "the approach of a physical system to equilibrium." For this re-
reason, the procedure in [5] is equivalent to the Galerkin method, which in turn represents one of five pos-
sible variants of the weighted-differences method. The paper by O'Toole [10] also deserves mention, Al-
though the method outlined there is applicable only to special cases, it may serve as a basis for compar-
ing the basis functions. In the same paper are given a few examples of problems solved by the variational
method, from which it becomes evident that, even for multiparameter basis functions, the results obtained
by various methods are as accurate as those obtained by less sophisticated schemes.

In this Part 2 of the article we will compare the variational method (specially formulated) with the
finite-differences method; their merits and drawbacks will be analyzed on the example of the thin plate
which had been tongidered in Part 1.

Main Contents. We use the same basis function as in Part 1:
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The temperature distribution can be expressed as a function of the dimensionless coordinate £ at various
times 7 and for some values of o, also for every g* (for instance, we have determined distribution (1) with
g* =20, 1, and 2.4674),

We will now analyze the same problem by the finite-differences method, The parabolic equation
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is solved by a well-known method. We will, therefore, outline the solution procedure schematically. The
interval (0, 1) £-axis is subdivided into N equal steps At =1/N, Let Ar be called the integration step along
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TABLE 1. Steady Temperature Distributions Obtained by Integrat-
ing Eq. (2) according to the Runge —Kutta Method

| AE?

q* [ B pax 8(0, ) 2+208 At

0,02 11 0,498 0,00122 0,001

1 0,1 11 0,489 0,00113 0,001
1 1,1 0,414 0,00060 0,0005

0,02 1,3 1,22 0,00122 0,001
29,4674 0,1 1,3 1,17 0,000605 0,0005
1 1,3 0,862 0,000543 0,0005

0,02 9,16 9,16 0,00106 0,001

20 0,1 7,32 7,32 0,00116 0,001

i 3,58 3,58 0,00027 0,00025

the time axis. Let 91,j be the temperature at the instant of time7 = jAr (=0, 1,..., ) at point & = AL
(i=-1, 0, 1,..., N). We approximate the derivatives in Eq. (2) as follows:

9 i1 — 0
(W)i,i =T A 0(Av), (3)
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In order to make the approximation error in (3) the same as in the other expressions, we let [11]
At
r= . (6)
(Ag)
Then Eq. (2) becomes
4r (1 +00;,5) (80,5 — 26,5 -+ 6;5 ) +0r (0,05 — 8,1 )" — 40,50 — 6;,5) + 4r (A8 ¢* = 0, (7

without regard to approximation errors.

Equation (2) was solved for several values of o and g* (specifically, for g* = 20, 1, and 2.4674), The
stability condition

(1+oe)r<-12— (8)

was found to bea very stringent oneand it restricted considerably the choice of Ar and A steps. Indeed,
from Eq. (8) we can find the maximum value of r = At /(AH2. Evidently,

At _ 1 .
[ (Ag)z ]max - 2(1 =+ ()'emax) : (

It is, therefore, necessary to determine 0 max &t least approximately, which can be done owing to the phys-
ical nature of the problem,

The steady-state temperature distributions shown in Table 1 have been determined as a result of in~
tegrating Eq. (2) by the Runge —Kutta method., The table indicates that, in order to set the most appropri-
ate step AT, 6,,,. has been assumed 1.1 and 1.3 respectively for g* = 1 and 2.4674 (these values have been
selected on the basis of physical considerations). Integration of Eq, (7) by the method of finite differences
has shown that these values are acceptable. Although computations were performed with various A¢ and
At steps satisfying (9), and by various finite-difference formulas of the (3)-(5) kind, expressions (3)-(5)
and the choice of unit step A = 0.05 may be considered adequate for all computations in terms of the de-
sired three~digit precision and in terms. of machine time. The Ar steps in the last column of the table

correspond to the choice of Af. If AT exceeds the respective corresponding value (A£)%/(2 + 208q+) by
even a few thousandths, instability results.
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Fig. 1. Difference between calculated terﬂperature distributions,
as a function of time: a) g* = 20; b) g¥ = 1; ¢) ¥ = 2.4674. Num-
bers at the curves indicate the values of o,

DISCUSSION OF RESULTS

The difference between temperature distributions obtained by the variational method and by the finite-
differences method A9 is shown in Fig. 1a as a function of 7 for several values of o with ¢* = 20, This dif-
ference was calculated at point £ = 0, where the variational method always yields a too high value, because
this value of ¢ is most interesting from the physical standpoint and because the maximum difference is noted
at the median plane of the plate (¢:= 0).

As long as the value of oremains small, both methods agree very closely; at a sufficiently large o
(0.2, 0.5, 1.0) there ig already less agreement with the difference still within a few percent (at the maxi-
mum temperature, in any case). At T =« the difference A9 is close to the difference already at 7 = 2.

The same comments apply to Fig. 1b, where we note an ideal agreement when ¢ = 0.02 and o = 0.1,
With o = 1, the agreement is close up toT = 0.05 and then worsens to a large discrepancy at T = 0.2. The
agreement improves further till it becomes clogse toT =,

The agreement is first close, then worsens, and then improves again for ¢ =1 and for all values of
g* =~ 2,4674. The agreement at 7 =« improves as ¢g* decreases, moreover, while for all values of ¢* only
within a few percent higher than 2.4674 (~10%) this "fluctuation™ does not occur. The longer the time in-
terval is, the wider is the discrepancy between any two temperature distributions calculated by each meth-
od respectively for the same instant of time, though both distributions are of the same order of magnitude
after the longest times considered here. With g* = 2.4674 (this value has been obtained from the equation
1-—qg* }\% = () the relative error remains almost constant from 7 = 0.4 to 7 = =, while the absolute error de-
creases slightly.

As hag been just said, the agreement is excellent when o= 0.02 and 0.1 (Fig. 1c); discrepancies appear
only when ¢ =1,

On the other hand, the rather close agreement when ¢ = 0.02 and 0.1 is explained by the percentwise
effect of this parameter, not sufficiently strong to cause an appreciable change in the thermal conductivity.
This is not so when ¢ =1, The preceding analysis applies only to those specific cases, inasmuch ag the
usually correct values of o cannot be established without considering also internal heat generation.

The main advantage of the variational method in solving heat conduction problems is that the tem-
perature-dependence of thermal conductivity does not restrict its applicability. In fact, this temperature
dependence can be incorporated directly into the variational principle. The finite-differences method is
beyond doubt more precise and correct, but the variational method should be considered preferable in
terms of machine time — if accuracy within a few percent is adequate. Therefore, the choice of one or
another method is dictated by the necessary precision, We also note that, depending on the required
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precision, it becomes necessary to test all assumptions made. The rate of heat generation cannot be con-
sidered constant, for instance, when the plate is of medium thickness (as in nuclear reactors), Such an as-
sumption would be a rather rough approximation. Let us consider, for example, the following mode of heat
generation:

S =
g = greos - g
with g* =20, I g* = 20 = const, the extremely large error will render the design of a nuclear reaction
unfeasible because of the excessive coolant requirement. The difference between two temperature dis-

tributions, both obtained by the finite~-differences method, is shown in Fig, 2, for the two said heat gener-
ation modes.

We note, in conclusion, that the choice of a method depends on the problem at hand., Particular at-
tention must be paid to the approximations to be made, because they may sometimes reduce the reliability
of the results.
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