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THERMAL CONDUCTIVITY 

II. VA I,WIITY OF VARIATIONAL FORMALISM 
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The nonl inear  equation of heat  conduction is solved by the method of finite d i f ferences .  
r e s u l t s  a r e  com pa red  with the solution to the s a m e  p r o b l e m  obtained by  the var ia t iona l  
method.  

The 

Introduction 

Nonlinear differential equations can be solved by the variational method. This method has been used 
in several studies concerning heat conduction problems. Finlayson and Scriven in a very interesting and 
critical paper show that the variational principle proposed by Rosen [2], Chambers [3], and Biot for solv- 
ing heat transfer problems represent special eases of the weighted-differences method [4]. In a more re- 
cent study, Finlayson and Seriven [5] analyze other attempts to formulate the variational principle and 
point out the error in these attempts stemming from the fact that the variation integral is nonstationary. 
Variational formalism is also discussed by Glansdorff, Prigogine, and Hays [6, 7]. Hays [8] and Hays and 
Curd [9] have formulated the variational principle by the "local poi~ential" method. The laUcer method is 
based  on the work by Pr igogine  in 1945, where  r e f e r e n c e  is made,  fo r  instance,  to  the poss ib i l i ty  of us ing 
the inc rease  in en t ropy as a m e a s u r e  of "the approach  of a phys ica l  s y s t e m  to equi l ibr ium. " F o r  this  r e -  
r e a son ,  the p r o c e d u r e  in [5] is equivalent  to  the Galerk in  method,  which in turn  r e p r e s e n t s  one of five pos -  
s ible  va r i an t s  of the weighted-d i f fe rences  method.  The p a p e r  by O'Toole  [10] a lso  d e s e r v e s  mention.  Al-  
though the method outlined the re  is appl icable  only to spec ia l  cases ,  it m a y  s e rve  as a bas i s  for  c o m p a r -  
ing the bas i s  functions.  In the s a m e  p a p e r  a r e  given a few examples  of p r o b l e m s  solved by the var ia t iona l  
method,  f r o m  which it becomes  evident that ,  even for  m u l t i p a r a m e t e r  bas i s  functions,  the r e su l t s  obtained 
by  va r ious  methods  a r e  as  a ccu ra t e  as those  obtained by l e s s  sophis t ica ted  s chemes .  

In this P a r t  2 of the a r t i c l e  we will co mpa re  the var ia t iona l  method (specia l ly  formulated)  with the 
f in i t e -d i f fe rences  method; t he i r  m e r i t s  and drawbacks  will be analyzed on the example  of the thin plate  
which had been cons idered  in P a r t  1. 

Main Contents.  We use  the s ame  bas i s  function as in P a r t  h 

0 = ~ (e - ~ *  C,, + D,) cos Z,,~. (1) 
r l  

The t e m p e r a t u r e  dis t r ibut ion can be e x p r e s s e d  as a function of the d imens ion less  coordinate  ~ at var ious  
t i m e s  �9 and for  some  values  of ~, a l so  fo r  eve ry  q* (for instance,  we have de te rmined  dis t r ibut ion (1) with 
q* = 20, 1, and 2.4674). 

We will now analyze the s ame  p r o b l e m  by the f in i t e -d i f fe rences  method.  The pa rabo l i c  equation 

020(~, ~) [ 00(~, ~ ) ] 2  80(~, ~) q, 
[1 + (~0(~, "01 O~ 2 + (r O~ 0"~ + = 0 (2) 

is solved by a well-known method.  We will, t he r e fo re ,  outline the solution p rocedu re  schemat ica l ly .  The 
in terva l  (0, 1) S-axis  is subdivided into N equal s teps  AS = 1/N. Let  A~ be called the integrat ion step along 
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T A B L E  1. 
ing Eq. (2) a c c o r d i n g  to  the R u n g e - K u t t a  Method 

q* 

2,4674 

20 

Steady T e m p e r a t u r e  Dis t r ibu t ions  Obtained by  I n t e g r a t -  

Omax 

1,1 
1,1 
1,1 

1,3 
1,3 
1,3 

9,16 
7,32 
3,58 

0(0, :r 

0.498 
0,489 
0,414 

1,22 
1,17 
0,862 

9,16 
7,32 
3,58 

2+2~Oma x 

0,00122 
0,00113 
0,00060 

o,oot22 
0,000605 
0,000543 

0,00106 
0,00116 
0,00027 

0,02 
0,1 
l 

0,02 
0,1 
1 

O, 02 
0,1 
t 

A-c 

0,001 
0,001 
0,0005 

0,00l 
0,0005 
0,0005 

0,001 
0,001 
0,00025 

the time axis. Let 0i, j be the temperature at the instant of time 7 = jAT (j = 0, i ..... ~o) at point ~ = iA~ 

(i = -I, 0, 1 ..... N). We approximate the derivatives in Eq. (2) as follows: 

(~0r)~,~ " = 0~,j+:A~--0~,j + 0(A~), (3) 

020.) O~+~,j--20~,j+6~ lJ 
O~ 2 z,i = (A~) z - ' -[- 0 (a~2), (4) 

( o o )  o~+1,, - -  o~_1,, 
O~- ~,i = 2A~ + 0(A~2). (5) 

In o r d e r  to m a k e  the a p p r o x i m a t i o n  e r r o r  in (3) the s a m e  as  in the o ther  e x p r e s s i o n s ,  we let [ l l ]  

At 
r = (6) 

Then Eq. (2) b e c o m e s  

4r(1 + ~0~,j) (0~+1, j - -  2O~,j + 0~_a,j) + ar(O~+l, i - -  0~_l,j) ~ - -  4 (Oi,j+ 1 - -  0~,j) + 4r (h~)2q * = 0, (7) 

without  r e g a r d  to a p p r o x i m a t i o n  e r r o r s .  

Equat ion  (2) was  so lved  fo r  s e v e r a l  va lues  of ~ and q* (speci f ica l ly ,  f o r  q* = 20, 1, and 2.4674). The 
s t ab i l i ty  condi t ion  

1 
(1 + @ )  r < - -  (8) 

2 

was  found to be a v e r y s t r i n g e n t o n e a n d  it r e s t r i c t e d  c o n s i d e r a b l y  the choice  of A~- and A~ s teps .  Indeed,  
f r o m  Eq.  (8) we can  find the m a x i m u m  value  of r = A~/(A~) 2. Evident ly ,  

[ 1 
r~a• 2(1 + r (9) 

It is ,  t h e r e f o r e ,  n e c e s s a r y  to  d e t e r m i n e  0ma  x at l eas t  app rox ima te ly ,  which can be done owing to the  p h y s -  
ical  na tu re  of the p r o b l e m .  

The s t e a d y - s t a t e  t e m p e r a t u r e  d i s t r i bu t ions  shown in Table  1 have been  d e t e r m i n e d  as  a r e s u l t  of in-  
t e g r a t i n g  Eq. (2) by  the R u n g e - K u t t a  method .  The table  ind ica tes  that ,  in o r d e r  to  se t  the  m o s t  a p p r o p r i -  
a te  s tep  AT, 0 m a  x has  been  a s s u m e d  1.1 and 1.3 r e s p e c t i v e l y  fo r  q* = 1 and 2.4674 ( these va lues  have been 
s e l e c t e d  on the bas i s  of phys i ca l  cons ide ra t i ons ) .  In tegra t ion  of Eq. (7) by the me thod  of f ini te  d i f f e r ences  
has  shown tha t  t he se  va lues  a r e  accep tab le .  Al though computa t ions  w e r e  p e r f o r m e d  with va r i ous  A~ and 
AT s teps  s a t i s fy ing  (9), and by  v a r i o u s  f i n i t e - d i f f e r e n c e  f o r m u l a s  of the (3)-(5) kind, e x p r e s s i o n s  (3)-(5) 
and the  choice  of unit  s tep A~ = 0.05 m a y  be c o n s i d e r e d  adequate  f o r  all  computa t ions  in t e r m s  of the  d e -  
s i r e d  t h r e e - d i g i t  p r e c i s i o n  and in t e r m s  of: m,xchine t i m e ,  The Ar s teps  in the las t  co lumn  of the  tab le  
c o r r e s p o n d  to  the choice  of A~. If A~ exceeds  the r e s p e c t i v e  c o r r e s p o n d i n g  value  (A~)2/(2 + 2O~max) by 
even a few thousand ths ,  ins tab i l i ty  r e s u l t s .  
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Fig .  I .  Di f fe rence  between calculated t e m p e r a t u r e  d is t r ibut ions ,  
as  a function of t ime :  a) q* = 20; b) q* = 1; c) q* = 2.4674. Num- 
b e r s  a t  the cu rves  indicate the values  of a. 

DISCUSSION OF RESULTS 

The difference between temperature distributions obtained by the variational method and by the finite- 
differences method AO is shown in Fig. la as a function of ~ for several values of ~ with q* = 20. This dif- 
ference was calculated at point ~ = 0, where the variational method always yields a too high ,value, because 
this value of $ is most interesting from the physical standpoint and because the maximum difference is noted 
at the median plane of the plate (~ = 0). 

As long as the value of ~ remains small, both methods agree very closely; at a sufficiently large 
(0.2, 0.5, 1.0) there is already less agreement with the difference still within a few percent (at the maxi- 
mum temperature, in any case). At T ~- o0 the difference ~ is close to the difference already at �9 = 2. 

The same comments apply to Fig. Ib, where we note an ideal agreement when ~ = 0.02 and ~ = 0.I. 
With ~ = I, the agreement is close up to T = 0.05 and then worsens to a large discrepancy at T = 0.2. The 
agreement improves further till it becomes close to ~ = ~. 

The agreement is first close, then worsens, and then improves again for ~ = I and for all values of 
q* ~ 2.4674. The agreement at T = co improves as q* decreases, moreover, while for all values of q* only 
within a few percent higher than 2.4674 (Nl0~ this "fluctuation" does not occur. The longer the time in- 
terval is, the wider is the discrepancy between any two temperature distributions calculated by each meth- 
od respectively for the same instant of time, though both distributions are of the same order of magnitude 
after the longest times considered here. With q* = 2.4674 (this value has been obtained from the equation 
1 - q*/X~ = 0) the relative error remains almost constant from �9 = 0.4 to m = ~, while the absolute error de- 
creases slightly. 

As has been just said, the agreement is excellent when ~= 0.02 and 0.I (Fig. Ic); discrepancies appear 
only when ~ = 1. 

On the other  hand, the r a t h e r  close a g r e e m e n t  when ~ = 0.02 and 0.1 is explained by the pe rcen twise  
effect  of this p a r a m e t e r ,  not suff icient ly s t rong  to cause  an apprec iab le  change in the t h e r m a l  conductivity. 
This is not so  when a = 1. The p reced ing  ana lys i s  app l i e s  only to those  specif ic  c a se s ,  inasmuch as the 
usua l ly  c o r r e c t  va lues  of ~ cannot be es tab l i shed  without consider ing a lso  internal  heat  generat ion.  

The main  advantage of the var ia t iona l  method in solving h e a t  conduction p r o b l e m s  is that  the tern-  
pe r a tu r e -dependence  of t h e r m a l  conductivi ty does not r e s t r i c t  its applicabi l i ty .  In fact ,  this  t e m p e r a t u r e  
dependence can be incorpora ted  d i r ec t ly  into the var ia t iona l  pr inc ip le .  The f in i te -d i f fe rences  method is 
beyond doubt m o r e  p r e c i s e  and c o r r e c t ,  but the var ia t iona l  method should be cons idered  p r e f e r a b l e  in 
t e r m s  of machine  t ime  - if a c c u r a c y  within a few pe rcen t  is adequate.  There fo re ,  the choice of one or 
ano ther  method is dictated by the n e c e s s a r y  p rec i s ion .  We a lso  note that,  depending on the requ i red  
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Fig. 2. Difference between t e m -  
pe ra tu re  distr ibutions based on 
two different modes of heat gen- 
erat ion,  as a function of t ime.  

precis ion,  it becomes  n e c e s s a r y  to tes t  all assumptions made. The rate  of heat generat ion cannot be con- 
s idered constant,  for  instance, when the plate is of medium thickness (as in nuclear  reac to rs ) .  Such an a s -  
sumption would be a r a the r  rough approximation.  Let us consider,  for  example, the following mode of heat 
generat ion:  

q+ = q ' c o s  ~ ,  
2 

with q* = 20. If q* = 20 = const, the ex t remely  large  e r r o r  will r ender  the design of a nuclear  react ion 
unfeasible because of the excess ive  coolant requi rement .  The difference between two t empera tu re  dis-  
t r ibut ions,  both obtained by the f in i te-di f ferences  method, is shown in Fig. 2, for  the two said heat gener-  
ation modes.  

We note, in conclusion, that the choice of a method depends on the problem at hand. Particular at- 
tention must be paid to the approximations to be made, because they may sometimes reduce the reliability 
of the results. 
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